
WARNING!

THIS DOCUMENT DESCRIBES A SECURITY VULNERABILITY AND CONTAINS
SENSITIVE INFORMATION.

DO NOT CIRCULATE.

RESPONSIBLE PUBLIC DISCLOSURE NOTICE

March 19, 2025

This document details serious security vulnerabilities identified in a publicly accessible and downloadable
application. Pursuant to established principles of responsible disclosure and in alignment with industry
best practices, this report is provided in good faith to facilitate prompt remediation of a demonstrable
security risk to users and infrastructure.
In accordance with bona fide security research protocols, the existence and nature of this vulnerability
shall be publicly disclosed under one of the following conditions, whichever occurs first:

1. Upon formal confirmation that the vulnerability has been remediated, with written notification to
the undersigned (including my inclusion in relevant correspondence confirming resolution).
(In this case, retrospective disclosure will be undertaken when vulnerabilities have been removed.)

2. Fifteen (15) days from the date of this notice, should no substantive response or clear remediation
plan be provided.

This timeline reflects standard security disclosure practices and is structured to afford the affected parties
a reasonable opportunity to rectify the issue while ensuring that the broader security implications are
not unduly prolonged.
If the affected entity elects to make an independent disclosure prior to the stated deadline, such an action
will be regarded as fulfilling the disclosure requirement. However, absent such disclosure, or absent timely
resolution, public disclosure shall proceed as specified.



∼∼∼



Security Vulnerabilities in Allen App:
Exposure of Sensitive Secrets in iOS Application Bundle

Sumukh Prasad
sumukh prasad (at) icloud (dot) com
https://sumukhprasad.github.io

Abstract
In the course of exploring the internal structure of the “Allen” iOS app (version 1.96), several API keys, client

IDs and miscellaneous secrets were discovered stored inside Property List (.plist) files stored within the application
bundle. Such insecure storage provides malicious actors with unauthorised data access, and poses significant security

and privacy risks, risk of service abuse, and potential financial costs to the organisation.
This report outlines the discovery process, potential implications, and recommendations for mitigating these risks.

I. Introduction

The security of sensitive credentials and secrets is essential
to ensuring the integrity of an application and protecting
user data and privacy.

During an exploration of the Allen iOS app’s package
contents, multiple sensitive credentials were found in plain-
text within .plist files. This report highlights the risks
associated with such exposure and provides recommenda-
tions for remediation.

Such credentials and secrets must, in no circumstance,
be published to any broad public audience through any
means, and specimens identified as having been leaked
through such action as being published must be immedi-
ately revoked and/or deactivated, while measures must be
taken to prevent a future leak of such kinds.

II. Discovery Process

Several keys and secrets were discovered through the process
outlined in this section. It is important to note that no re-
verse engineering, decryption, or tampering was performed
to obtain these credentials, as they were readily accessible
in their original form.

• Download the “Allen” iOS app from the Apple App
Store.

• View package contents and navigate to root directory
of the app.

• Open Info.plist or GoogleService-Info.plist
Property List files.

It is, again, important to note that these are highly sensi-
tive credentials that were obtained without the use of reverse

engineering, decryption, or tampering.

III. Data Recovered

The following data was obtained from this exercise:

• GoogleService-Info.plist

– CLIENT_ID
– REVERSED_CLIENT_ID
– ANDROID_CLIENT_ID
– API_KEY
– GCM_SENDER_ID
– STORAGE_BUCKET
– PROJECT_ID
– BUNDLE_ID
– GOOGLE_APP_ID

• Info.plist

– CleverTapToken
– APPSFLYER_KEY
– DATADOG_KEY
– MIXPANEL_API_KEY
– CleverTapAccountID

IV. Implications

The presence of hard-coded secrets in the application bundle
exposes the application and its backend to several security
threats:

• Unauthorised API access

1



– Malicious actors may use the Google API keys
to make requests to Google Cloud services, po-
tentially leading to data leaks, access to storage
buckets, and abuse of backend services.

– If the API key has write permissions, an attacker
could modify or delete data.

• Service Abuse

– Exposed credentials such as the AppsFlyer API
Key, CleverTap Token, GCM IDs, and Datadog
Key allow for access to analytics, push notifica-
tion services, and logging.

– This can be exploited to manipulate app analyt-
ics, spam users with push notifications, or inject
misleading data into logs.

• User Privacy Risks

– If any of the exposed keys grant access to user-
related data (such as Firebase Storage Buckets
or Google Cloud services), attackers could po-
tentially access private user information, leading
to privacy breaches.

V. Recommendations

To mitigate security risks, it is recommended that the fol-
lowing steps be taken immediately:

• Remove secrets from application bundle

– Sensitive secrets must never be stored in plain-
text inside an application bundle, or ideally never
stored on a client-facing downloadable or a client
device.

• Rotate and revoke exposed credentials

– Since the credentials have already been exposed,
all affected API keys and tokens should be re-
voked immediately and new credentials should
be issued.

• Implement remote storage for secrets

– Sensitive APIs must be accessed only by servers
that act as proxy APIs for client-facing services.

– As a general rule, sensitive information must
never be placed outside the purview of infras-
tructure the organisation has direct access to.

• Use encrypted local storage

– If keys must be stored locally, consider using se-
cret stores or services like Apple’s Keychain Ser-
vice to store credentials.

• Implement runtime security measures

– Consider implementing certificate pinning and
other app security techniques to prevent man-
in-the-middle attacks

• Implement security audits as part of CI/CD pipelines

– Automated security tools (e.g., GitHub Secret
Scanning, Static Application Security Testing
(SAST)) can help identify issues before deploy-
ment.

∼∼∼

2



Listings

Info.plist (trimmed)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList -1.0.dtd">
<plist version="1.0">
<dict>

...
<key>CleverTapToken</key>
<string> </string>
...
<key>APPSFLYER_KEY</key>
<string> </string>
...
<key>DATADOG_KEY</key>
<string> </string>
...
<key>MIXPANEL_API_KEY</key>
<string> </string>
...
<key>CleverTapAccountID</key>
<string> </string>
...

</dict>
</plist>

GoogleService-Info.plist (trimmed)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList -1.0.dtd">
<plist version="1.0">
<dict>

<key>CLIENT_ID</key>
<string> </string>
<key>REVERSED_CLIENT_ID</key>
<string> </string>
<key>ANDROID_CLIENT_ID</key>
<string> </string>
<key>API_KEY</key>
<string> </string>
<key>GCM_SENDER_ID</key>
<string> </string>
...
<key>BUNDLE_ID</key>
<string> </string>
<key>PROJECT_ID</key>
<string> </string>
<key>STORAGE_BUCKET</key>
<string> </string>
...
<key>GOOGLE_APP_ID</key>
<string> </string>

</dict>
</plist>

3



Figures

Figure 1: App Bundle contents

Figure 2: Contents of GoogleService-Info.plist

Figure 3: Contents of Info.plist (I)

Figure 4: Contents of Info.plist (II)

∼∼∼

4


	Introduction
	Discovery Process
	Data Recovered
	Implications
	Recommendations

